Trustwave and Cybereason Merge to Form Global MDR Powerhouse for Unparalleled Cybersecurity Value. Learn More

Trustwave and Cybereason Merge to Form Global MDR Powerhouse for Unparalleled Cybersecurity Value. Learn More

Services
Managed Detection & Response

Eliminate active threats with 24/7 threat detection, investigation, and response.

Co-Managed SOC (SIEM)

Maximize your SIEM investment, stop alert fatigue, and enhance your team with hybrid security operations support.

Advisory & Diagnostics

Advance your cybersecurity program and get expert guidance where you need it most.

Penetration Testing

Test your physical locations and IT infrastructure to shore up weaknesses before exploitation.

Database Security

Prevent unauthorized access and exceed compliance requirements.

Email Security

Stop email threats others miss and secure your organization against the #1 ransomware attack vector.

Digital Forensics & Incident Response

Prepare for the inevitable with 24/7 global breach response in-region and available on-site.

Firewall & Technology Management

Mitigate risk of a cyberattack with 24/7 incident and health monitoring and the latest threat intelligence.

Solutions
BY TOPIC
Microsoft Security
Unlock the full power of Microsoft Security
Offensive Security
Solutions to maximize your security ROI
Rapidly Secure New Environments
Security for rapid response situations
Securing the Cloud
Safely navigate and stay protected
Securing the IoT Landscape
Test, monitor and secure network objects
Why Trustwave
About Us
Awards and Accolades
Trustwave SpiderLabs Team
Trustwave Fusion Security Operations Platform
Trustwave Security Colony
Partners
Technology Alliance Partners
Key alliances who align and support our ecosystem of security offerings
Trustwave PartnerOne Program
Join forces with Trustwave to protect against the most advance cybersecurity threats

Detecting A Surveillance State - Part 3 Infected Firmware

In this third installment of Detecting A Surveillance State blog series I will move away from hardware devices as discussed in parts one and two and talk instead about something harder to detect--persistent compromises made possible by BIOS or firmware modifications.

Again, the source used on how these devices worked was restricted to the public knowledge about them found on Wikipedia, and what was publically disclosed at 30c3.

In the leaks links above, they describe utilities used by some state actor spy agencies that would allow for persistent compromises on devices utilizing their own firmware or BIOS to prevent removal during an OS reinstall or similar. These attacks can affect computers, network routers and even some hard drives.

The documents describing the programs I'm covering today do not explain how the infections would take place. The most common methods to infect a firmware or BIOS would be to access an already exploited system or intercept the device before the owners of the devices receive them (e.g.. supply chain attack) and install the infected BIOS or firmware. Since this portion of the attack is not known at this time, I will not cover specifics about how to prevent supply chain attacks or on the fly firmware/BIOS modifications.

The names of some of these programs are:

DIETYBOUNCE: Motherboard BIOS Infector
SWAP: Hard Drive Firmware Infector
HEADWATER, SIERRAMONTANA, and JETPLOW: Each of these are firmware backdoors that target popular networking hardware.

I've grouped these cross-platform infections together because they each typically infect a device or computer in a manner that is traditionally trusted and inspected for compromise. Keep in mind, they're just not normally inspected. This doesn't mean it's difficult or impossible to access them.

For each of these infections, where applicable, pulling the chip and replacing it with a new freshly burned BIOS chip or compact flash card would be sufficient. If you're curious, compare the data on the untrusted chip with the image available from the manufacturer. We can assume that a spy would not have a secret implant that has infected every available image for a device. That would be both too costly and easily detected by employees at the manufacturer who work on the project.

When dealing with built-in firmware it's a bit more difficult than pulling and replacing. You will need to re-flash the device using an operating system that is not at risk of being attacked by the infected firmware. Due to the lack of hard evidence here, it's hard to recommend an approach. You could use a more obscure OS that the firmware wouldn't know how to attack. You could boot the device into a low level OS in hopes that the firmware infection isn't able to protect itself. Or, you could wire in a debugging header to the device (such as JTAG, if available) to read or write the firmware on the device to clear things up for good.

These methods are pretty complicated even for experienced computer users. The time required to read, compare and/or write the data to the chips make it an improbable step to take unless you absolutely knew it was a necessity anyway.

Wow, three down already. Handling infected firmware wasn't too hard. Next time we will get in to something entirely different; Cellular network attacks. See you then!

  • Read part one of this series here
  • Read part two of this series here

 

ABOUT TRUSTWAVE

Trustwave is a globally recognized cybersecurity leader that reduces cyber risk and fortifies organizations against disruptive and damaging cyber threats. Our comprehensive offensive and defensive cybersecurity portfolio detects what others cannot, responds with greater speed and effectiveness, optimizes client investment, and improves security resilience. Learn more about us.

Latest Intelligence

Discover how our specialists can tailor a security program to fit the needs of
your organization.

Request a Demo